
The Solution Space of Polynomial Equations

with Real Roots and some of its Implications

Kenan Kalajdzic <kenan@unix.ba>

January 2012 (originally written in December 1998)

1 Introduction

It is known from mathematics and physics that a state of a system can be
represented by a single unique point in a phase space. For each such point in
the phase space, there is a corresponding radius vector. This means that, if we
know the magnitude of the radius vector and the angles it forms with each of
the coordinate axes of the phase space, then we know the state of the system.

By using an analogy to the phase space, we can define a space in which every
equation of the form

anxn + an−1x
n−1 + · · · + a1x + a0 = 0 (1)

whose all solutions are real, will be represented by a single point.

2 Basic definitions

Let us assume that equation (1) of n-th order is given and let us also assume this
equation has n real solutions x10, x20, . . . , xn0. In an n-dimensional Euclidean
space with coordinates x1, x2, . . . , xn we could assign one of the solutions of the
equation (1) to each of the coordinate axes x1, x2, . . . , xn, so that the solution
xi0 is assigned to axis xi where i = 1, 2, . . . , n. It is obvious that in this space,
the equation (1) will be defined by a single point (x10, x20, . . . , xn0) with a
corresponding radius vector X0 = {x10, x20, . . . , xn0}. A space, defined in this
manner, is called the solution space of the polynomial equation (1), which we
will denote by S

n.
The magnitude of the vector X0 is given by the following expression

|X0| =
√

x2

10
+ x2

20
+ · · · + x2

n0

and is called the solution radius of the polynomial equation (1).
If the value of the solution radius is known, determining the components of

the vector X0, and thus solving the equation (1), requires finding the angles
that X0 forms with the coordinate axes x1, x2, . . . , xn of the solution space S

n.
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If by ϕi we denote the angle, which is formed by the vector X0 and axis xi of
S

n, then we can write the solutions of the equation (1) in the form

xi0 = |X0| cosϕi i = 1, 2, . . . , n

ϕ1, ϕ2, . . . , ϕn are called the solution angles of the polynomial equation (1).
Since | cosϕi| ≤ 1 for i = 1, 2, . . . , n, it is obvious that all solutions of

equation (1) lie in the closed interval [−|X0|, +|X0|].

3 Theorem of n real roots

Theorem. Let p(x) = anxn + an−1x
n−1 + · · · + a1x + a0 be a polynomial

function, whose coefficients an, an−1, . . . , a1, a0 are real numbers with an 6= 0.
Let us assume that all zeros of p(x) are real numbers. Then all n roots of the

equation p(x) = 0 lie in the closed interval [−R, +R], where R is given by the

following expression

R =

√

(

an−1

an

)2

− 2an−2

an

R ∈ R, R ≥ 0 (2)

Proof. Let x10, x20, . . . , xn0 be the zeros of the function p(x). Then, based on
the Viète’s formulas, we can write:

−an−1

an

=
n
∑

i=1

xi0 (3)

an−2

an

=

n
∑

i,j=1

i<j

xi0xj0 (4)

By squaring equation (3), we get

(

an−1

an

)2

=

n
∑

i=1

x2

i0 + 2

n
∑

i,j=1

i<j

xi0xj0 (5)

The first term on the right-hand side of equation (5) is the square of the solution
radius of the equation p(x) = 0 in the n-dimensional solution space S

n. We will
denote this solution radius with R. The second term on the right-hand side of
(5) is obviously equal to the right-hand side of (4), so, after substituting (4)
into (5), we can write

(

an−1

an

)2

= R2 + 2
an−2

an

By solving this equation for R, we get the expression given in (2), where a2

n−1
≥

2anan−2. Since R is the solution radius of p(x) = 0, we conclude that all zeroes
of p(x) lie in the closed interval [−R, +R] with R given by equation (2). This
concludes the proof.
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One of the assumptions of our theorem is that all zeroes of the polynomial
function p(x) are real numbers. Since the solution radius R is by definition a
non-negative real number, we concluded that the expression under the square
root on the right-hand side of (2) must also be non-negative. Therefore, the
necessary condition for all roots of the polynomial equation (1) to be real is that
a2

n−1
be greater or equal to 2anan−2.

4 Case study: The quadratic equation

In this section we follow the process of solving the quadratic equation in the
context of its solution space. Although solving the quadratic equation may not
sound very appealing, the fact that it is performed within a two-dimensional
solution space gives us the possibility to work with fairly simple trigonometric
transformations, which are also suitable for visual representation.

x1

x2

R

(x′1, x′2)

ϕ

Figure 1: Solution of the quadratic equation in a two-dimensional solution space

Figure 1 illustrates a two-dimensional solution space of the quadratic equation

ax2 + bx + c = 0. (6)

The solution of this equation is represented by the point (x′

1
, x′

2
), and the cor-

responding Viéte’s formulas take the following form:

− b

a
= x′

1
+ x′

2
(7)

c

a
= x′

1
x′

2
(8)

If we represent the solution of equation (6) in polar coordinates, we can write

x′

1
= R cosϕ (9)

x′

2
= R sin ϕ (10)

Adding the equations (9) and (10) together gives

x′

1
+ x′

2
= R(sin ϕ + cosϕ) (11)
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After substituting (7) into (11) and squaring the resulting equation we get

(

− b

a

)2

= R2(sin ϕ + cosϕ)2 =

= R2(sin2 ϕ + 2 sinϕ cos ϕ + cos2 ϕ) = R2(1 + sin 2ϕ)

and thus
(

b

a

)2

= R2 + R2 sin 2ϕ (12)

Now we multiply equations (9) and (10), so we have

x′

1
x′

2
= R2 cosϕ sin ϕ =

=
1

2
R2 2 sin ϕ cosϕ =

1

2
R2 sin 2ϕ

which, together with (8), gives

2c

a
= R2 sin 2ϕ (13)

After substituting (13) into (12) and solving for R, we finally get

R =

√

(

b

a

)2

− 2c

a
(14)

We can see that equation (14) is the specific form of (2) for the polynomial
equation given in (6). In this particular case, since we only have to deal with
two variables in the polar coordinate system, and we already know the radius R

of the position vector corresponding to the point (x′

1
, x′

2
), we can easily calculate

the second unknown, which is the angle ϕ. To do so, we substitute R from (14)
back into (13):

2c

a
=

(

(

b

a

)2

− 2c

a

)

sin 2ϕ

Solving this equation for ϕ gives

ϕ =
1

2
arcsin

(

2ac

b2 − 2ac

)

(15)

Equations (9) and (10) express the solution of the quadratic equation (6) in
polar coordinates of the two-dimensional solution space. If we substitute (14)
and (15) into (9) and (10), we get:

x′

1
=

√

(

b

a

)2

− 2c

a
cos

(

1

2
arcsin

(

2ac

b2 − 2ac

))

(16)

x′

2
=

√

(

b

a

)2

− 2c

a
sin

(

1

2
arcsin

(

2ac

b2 − 2ac

))

(17)
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Equations (16) and (17) represent a novel form of the solutions of the quadratic
equation (6), expressed in terms of its coefficients a, b and c, yet different from
the commonly known form

x1,2 =
−b ±

√
b2 − 4ac

2a
.

5 Conclusion

Introducing the concept of a solution space of the polynomial equation (1) in
Section 2 helped us formulate and prove the theorem of n real roots in Section
3. This theorem provides a simple way to determine the boundaries of the
interval which contains all the roots of equation (1). For n > 4, the roots of this
polynomial equation can only be found numerically, in which case it is useful to
know where all these solutions reside.

One of the limitations of the presented approach is the fact that it requires
all the roots of our polynomial equation (1) to be real. This also means that
equations (16) and (17) are only valid if the quadratic equation (6) has real
solutions.

How the paradigm of the solution space would be affected by polynomial
equations with complex roots, remains a question for further research.
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