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Abstract 

In this paper we describe two novel methods for active detection and prevention of ARP-

poisoning-based Man-in-the-Middle (MitM) attacks on switched Ethernet LANs. As a 

stateless and inherently insecure protocol, ARP has been used as a relatively simple means to 

launch Denial-of-Service (DoS) and MitM attacks on local networks and multiple solutions 

have been proposed to detect and prevent these types of attacks. MitM attacks are particularly 

dangerous, because they allow an attacker to monitor network traffic and break the integrity of 

data being sent over the network. We introduce backward compatible techniques to prevent 

ARP poisoning and deal with sophisticated stealth MitM programs. 
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1. Introduction 

Address Resolution Protocol (ARP) (Plummer, 1982) is an essential component of 

communication in an Ethernet LAN environment. It provides a mechanism to 

translate logical network addresses into physical (MAC) addresses which are 

required for the exchange of packets on a local network. 

ARP is a stateless protocol designed without security in mind, which makes it an 

ideal means for launching DoS and MitM attacks on a LAN. By sending spoofed 

MAC addresses in ARP reply packets, a malicious host can poison the ARP cache of 

other hosts on the local network and thereby easily redirect network traffic. 

To mitigate the danger of ARP-based attacks on local networks, multiple techniques 

have been proposed to detect and prevent attacks by malicious hosts. Detection of 

ARP poisoning is usually performed by specialized network tools, such as 

arpwatch (LBNL Network Research Group, n.d.), or Intrusion Detection Systems. 
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In (Carnut & Gondim, 2003) and (Trabelsi & Shuaib, 2007) the authors propose 

delegating the detection to specialized detection or test stations. 

For prevention of ARP-based attacks, a simple solution consists of using static ARP 

entries in the ARP cache. This solution, however, doesn’t scale well especially in 

heterogeneous networks with dynamic IP addressing. Other solutions include use of 

cryptography for authenticating ARP replies (Bruschi et al., 2003), (Goyal & 

Tripathy, 2005), (Lootah et al., 2007), artificial intelligence (Trabelsi & El-Hajj, 

2007), or hardware support for dynamic ARP inspection (Cisco Systems, 2009). 

We have developed two methods for detection and prevention of ARP-poisoning-

based MitM attacks. For simplicity and convenience, we call these Method 1 and 

Method 2, respectively. Our motivation was to find ways to cope with increasingly 

sophisticated MitM attack tools, while still maintaining backward compatibility with 

existing ARP implementations. We avoided the use of specialized computers as 

helpers in the attack detection process, in contrast with several of the aforementioned 

methods which require the use of such computers (e.g. a test station or a CA server). 

Method 1, described in Section 2, uses certain techniques proposed in (Trabelsi & 

Shuaib, 2007), but brings several improvements in the approach to detection. Instead 

of relying on a test host to detect potential attacks, each host performs detection by 

itself. This eliminates the need for a test host, which is a single point of failure, and 

makes it possible to extend Method 1 to perform distributed and coordinated 

detection with multiple hosts. Moreover, with Method 1 detection is triggered by a 

reception of one or more ARP replies and targets only the hosts who send these 

replies, instead of scanning the whole network in the search of potential attackers. 

Method 2, introduced in Section 3, addresses limitations of Method 1 in dealing with 

sophisticated MitM attack tools. It relies on a novel technique for detection of MitM 

attacks on switched Ethernet LANs through modification of the switch CAM table in 

a way which makes the detection transparent to the MitM host. 

2. Method 1 – Reverse ARP poisoning with active IP probing 

Method 1 consists of the following two steps: 

1. Reverse ARP poisoning – A host implementing reverse ARP poisoning 

sends an ARP reply as a response to every ARP reply it receives from other 

hosts. The purpose of this reverse ARP reply is to poison the ARP cache of 

attacking hosts. 

2. Active IP probing – Active IP probing is then used to differentiate between 

legitimate hosts and MitM hosts. This step consists of sending a single IP 

packet to the host from which the initial ARP reply was received and 

analyzing the response. For simplicity, in this document we use probe 

packets containing simple ICMP echo requests, even though it may 

generally be more reliable to use TCP or UDP instead of ICMP. 
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The best way to illustrate the workings of Method 1 is to see it in action. For this 

purpose, we use two common scenarios. 

In the first scenario, we analyze the packet exchange in the case of a legitimate host 

sending an ARP reply. The second scenario will then show how Method 1behaves 

when a MitM host attempts to carry out an ARP poisoning attack. 

Figure 1 is used as a reference for both scenarios. We assume that all three hosts, 

HostA, HostB and HostX, are on the same Ethernet LAN. Furthermore, HostA 

and HostB are legitimate hosts and HostX is a MitM attacker. Also, HostA uses a 

regular implementation of ARP, as found in modern operating systems. HostB, on 

the other hand, implements Method 1, and thus handles ARP traffic in a different 

way, as will be described shortly. 

 

Figure 1: An ARP poisoning attack on a switched LAN 

2.1. Scenario 1 – Legitimate ARP reply 

In this scenario, HostA sends a legitimate ARP reply to HostB. We can follow the 

exchange of packets generated as Method 1is employed: 

1. HostA sends an ARP reply packet to HostB. Since this is a legitimate 

ARP reply, it contains the mapping between HostA_IP and HostA_MAC. 

2. HostB executes the first step of Method 1, and immediately sends an ARP 

reply back to HostA attempting to poison its ARP cache. In this ARP reply 

HostB maps HostA_IP to HostB_MAC. Since, however, HostA is the 

owner of HostA_IP, it simply drops this ARP reply with the invalid 

mapping. 

3. HostB then continues to the second step of Method 1 and sends an ICMP 

echo request packet addressed to HostA_IP with HostA_MAC as the 

destination MAC address in the Ethernet frame header. 
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4. HostA receives the ICMP echo request and responds to HostB with an 

ICMP echo reply. For HostB this is an indicator that the reverse ARP 

poisoning attempt was unsuccessful and that the ARP reply sent by HostA 

is a legitimate one. 

5. As a result, HostB stores the mapping HostA_IP ļ HostA_MAC in its 

ARP cache. 

2.2. Scenario 2 – ARP poisoning attempt 

In this scenario the attacking host HostX attempts to poison the ARP cache of 

HostB in order to impersonate HostA. This should allow the attacker to hijack all 

traffic going from HostB to HostA. Since HostB implements Method 1, the 

exchange of packets in this case will be as follows: 

1. The first packet is an ARP reply sent from HostX to HostB. This ARP 

reply contains the mapping between HostA_IP and HostX_MAC. If 

HostB had a regular implementation of ARP, it would accept this ARP 

reply and store the incorrect mapping in its ARP cache. From that point on, 

HostB would deliver all network traffic destined to HostA_IP to 

HostX’s network interface. 

2. Nevertheless, HostB handles ARP traffic in compliance with Method 1, so 

instead of blindly accepting the ARP reply from HostX, HostB begins the 

detection procedure by sending a reverse ARP reply to HostX. This ARP 

reply contains the mapping between HostA_IP and HostB_MAC. 

Assuming that the attacking host (i.e. HostX) uses an unmodified 

implementation of ARP, the reply sent by HostB will poison its ARP 

cache. 

3. HostB proceeds with the MitM detection by delivering an ICMP echo 

request packet, destined to HostA_IP, to HostX’s network interface (by 

using HostX_MAC as the destination in the Ethernet frame header). 

4. HostX is acting as a MitM attacker, so it attempts to forward this ICMP 

echo request packet to HostA. However, since HostX’s ARP cache has 

previously been poisoned by HostB, HostX delivers the probe packet to 

HostB’s MAC address. This effectively means that the same packet sent in 

the previous step by HostB will be returned to it by HostX. The detection 

of a duplicate packet is a clear indicator for HostB that reverse ARP 

poisoning was successful and that HostX is a MitM attacker. 

5. HostB thus drops the initial ARP reply sent by HostX. Since at this point 

an intrusion attempt has been detected, HostB can generate a real-time 

intrusion alert and log the intrusion attempt for the purpose of a future 

forensic investigation. 



Proceedings of the Sixth International  

Workshop on Digital Forensics & Incident Analysis (WDFIA 2011) 

 

85 

3. Method 2 – IP probing with CAM table poisoning 

Method 1, described in Section 2, works well for detection of MitM computer 

systems which rely on the operating system built-in routing and ARP functions. 

There are, however, much more sophisticated MitM programs, which take full 

control over packet forwarding. This allows these programs to disguise themselves 

very well in order to evade detection. One popular program which falls into this 

category is the well-known Cain & Abel (Montoro, n.d.). 

Cain & Abel doesn’t rely on the ARP and routing functions of the operating system, 

but instead maintains its own mappings between IP addresses and MAC addresses. 

The program utilizes these private mappings when forwarding frames between hosts 

on the network. This makes it insusceptible to reverse ARP poisoning, which is the 

basis of Method 1. 

In order to be able to detect any MitM host, regardless of the way it handles routing 

of packets between other hosts in the network, we need to influence flow of packets 

in a way which is beyond control of the MitM host. 

In the following paragraphs, we describe one method to achieve this, which we call 

Method 2 for brevity and simplicity. Figure 2 will serve as a reference for our 

description of Method 2. 

 

Figure 2: Physical connection of hosts in our LAN 

During normal operation of the switch, its CAM (in order to minimize switching 

latency, Ethernet switches store the mappings between MAC addresses and switch 

ports in a table inside a special Content-Addressable Memory) table contains the 

mappings shown in Table 1. 
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MAC Address Port 

HostA_MAC 1 

HostB_MAC 7 

HostX_MAC 3 

Table 1: Switch CAM table during normal operation 

We again assume that HostX wants to redirect traffic between HostA and HostB 

through the use of ARP poisoning. HostA uses a regular implementation of TCP/IP, 

including ARP, and HostB employs Method 2. We can now follow the use of 

Method 2 through the following flow of events: 

1. HostX sends an ARP reply to HostB. This ARP reply contains the mapping 

between HostX_MAC and HostA_IP. 

2. Before entering this mapping into its ARP cache, HostB begins executing 

Method 2, whose first step is broadcasting of an ARP request for HostA_IP. 

3. As a result of this ARP request, HostB receives two replies with two different 

MAC address mappings for HostA_IP: one reply comes from HostA with 

HostA_MAC and the other is from the attacker with HostX_MAC. Method 2 

doesn’t require these two replies to reach HostB in any particular order. 

4. The reception of two different MAC addresses for a single IP address is a first 

indicator for HostB that one of them comes from a MitM attacker. Thus, 

HostB continues with the next step of Method 2, which is sending multiple 

ICMP echo request packets out its network interface. All these packets carry 

HostB_IP as the source IP address and HostA_IP as the destination IP 

address in their IP header. However, their Ethernet frame header may contain 

one of the following two combinations of MAC addresses: 

(a) HostX_MAC is the destination MAC address and HostA_MAC is the 

source MAC address, 

(b) HostA_MAC is the destination MAC address and HostX_MAC is the 

source MAC address. 

5. To understand the purpose of using these two MAC address combinations, let 

us analyze what happens when HostB sends two ICMP echo request packets 

addressed as in 4a and 4b, respectively: 

(a) The frame, addressed as specified in 4a leaves HostB and enters the 

switch through port #7. Based on the entries in its CAM table (see Table 

1), the switch forwards the frame to HostX through port #3. Meanwhile, 

since the frame with source MAC address HostA_MAC entered the 

switch through port #7, the switch updates its CAM table with a new 

mapping for HostA_MAC so the CAM table now has the contents shown 

in Table 2. HostX receives the frame, looks up the destination IP address, 
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and forwards the frame immediately towards HostA, specifying 

HostA_MAC as the destination MAC address. Once this frame reaches 

the switch, two possibilities exist: 

i. If the switch CAM table still contains the mapping between 

HostA_MAC and port #7, the switch will forward the frame out 

through port #7. HostB receives its own ICMP echo request packet, 

which is an indicator that HostX attempted to forward this frame to 

HostA. This means that HostX is not the real owner of HostA_IP, 

but a MitM attacker. 

ii. If, in the meantime, HostA sent some network traffic through switch 

port #1, the original mapping of HostA_MAC to port #1 in the CAM 

table of the switch will have been restored. In this case, the switch 

forwards the ICMP echo request through port #1 to HostA, and 

HostA responds by sending an ICMP echo reply packet back to 

HostB. In this case HostB cannot conclude with certainty that 

HostX forwarded the frame to HostA. 

(b) The frame, addressed as specified in 4b enters the switch through port #7, 

and switch forwards it through port #1 to HostA. Since the source MAC 

address of this frame is HostX_MAC, the switch maps HostX_MAC to 

port #7 in its CAM table. Table 3 shows the new mapping. When HostA 

receives the ICMP echo request packet, it builds a response in form of an 

ICMP echo reply packet with source IP address HostA_IP and 

destination IP address HostB_IP. 

i. Assuming that HostA’s ARP cache has been previously poisoned by 

HostX, the response packet will be sent in a frame addressed to 

HostX_MAC. If the contents of the CAM table haven’t been modified 

in the meantime (i.e. they are still as shown in Table 3), the switch will 

deliver this frame through port #7 to HostB. If, on the other hand, 

HostX generated some network traffic while HostA was preparing 

the response, the CAM table will have returned to its original state 

(see Table 1). Thus, the switch will send the response packet from 

HostA to HostX through port #3. Because HostX is a MitM host, it 

will forward the response to HostB. 

ii. If the ARP cache of HostA hasn’t been modified, it will contain a 

correct mapping between HostB_IP and HostB_MAC. Therefore, 

the ICMP reply packet from HostA will be sent to HostB_MAC and 

delivered by the switch through port #7 to HostB. 

We see that, in either case, using the MAC address combination given in 4b results 

in an ICMP echo reply packet being sent to HostB. In other words, it can not 

happen that in the given scenario an ICMP echo request packet with source MAC 

address HostX_MAC and destination MAC address HostA_MAC gets delivered 

back to HostB. 
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MAC Address Port 

HostA_MAC 7 

HostB_MAC 7 

HostX_MAC 3 

 

Table 2: Switch CAM table after 

HostB sends a frame from HostA 

MAC to HostX MAC through port #7 

MAC Address Port 

HostA_MAC 1 

HostB_MAC 7 

HostX_MAC 7 

 

Table 3: Switch CAM table after 

HostB sends a frame from HostX 

MAC to HostA MAC through port #7 

When, on the other hand, the combination of source and destination MAC addresses 

is specified as in 4a, it is possible for the original ICMP echo request packet to be 

delivered back to HostB (see 5(a)i), though it may also happen that HostB receives 

an ICMP echo reply from HostA (see 5(a)ii). The latter case cannot generally be 

distinguished from the case described in 5b, which uses frames addressed as in 4b. 

Therefore, we must ensure that a host implementing Method 2 (in our case, HostB) 

quickly sends multiple ICMP echo request packets with both combinations of source 

and destination MAC addresses given in 4a and 4b. To identify the MitM host it 

suffices for HostB to receive only one of its own ICMP echo request packets back 

through its network interface. 

Method 2 alters the CAM table of the switch so that some frames destined to HostA 

are delivered to HostB (see Table 2). To restore the original mapping of 

HostA_MAC to port #1 (see Table 1), HostB may broadcast an ARP request for 

HostA_IP. This would force HostA to send back an ARP reply and thereby help 

switch reassociate its MAC address with port #1. 

Notice that, for Method 2 to work, HostB’s network card must be put into 

promiscuous mode (when a network card operates in promiscuous mode, it accepts 

all traffic and passes it to the central processing unit, even if this traffic is not 

addressed to that particular network card), so it can collect the hijacked frame which 

HostX attempts to forward to HostA. Another important assumption is that HostA 

was not subject to a DoS attack, so it was able to respond to our ARP requests. 

4. Results 

We ran multiple tests on a switched Ethernet LAN to test the effectiveness of 

Method 1 and Method 2 in detecting ARP-poisoning-based MitM attacks. In all these 

tests our setup was as depicted by Figure 2. HostA and HostB were running 

Windows XP and Linux respectively, and the operating system of HostX changed as 

required by the tests. Using several common tools, we performed MitM attacks from 

HostX, attempting to poison the ARP cache of HostA and HostB. The role of 

HostB was to detect these attack attempts by employing Method 1 and Method 2. 
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4.1. Detecting Ettercap and dsniff with Method 1 

In the first test HostX (running Backtrack Linux) performed attacks against ARP 

cache of HostA and HostB using two mainstream attack tools, Ettercap 

(Ornaghi & Valleri, n.d.) and arpspoof with dsniff (Song, n.d.). 

HostB was set up to perform attack detection with Method 1. Since Ettercap and 

dsniff rely on the operating system built-in ARP and routing functions, we were 

able to successfully perform reverse ARP poisoning and detect all the attacks 

through active IP probing (i.e. Method 1) with 100% accuracy. 

4.2. Detecting Cain & Abel with Method 1 

For the purpose of this test we booted HostX into Windows XP and launched 

multiple MitM attacks against HostA and HostB using Cain & Abel. This time, 

however, HostB failed to detect any of our attacks. Knowing that Cain & Abel uses 

its own IP-to-MAC address mappings when forwarding packets, this was expected. 

4.3. Detecting Cain & Abel with Method 2 

As we know from Section 3, when using Method 2 HostB poisons the CAM table 

of the switch in order to capture the frame which HostX attempts to forward 

towards HostA. This is not a big problem when HostA is idle. If, however, HostA 

is actively communicating, this creates a race between HostA and HostB. 

Depending on the rate at which HostA sends out packets into the network, it may be 

more or less difficult for HostB to win the race and hijack the packet required for 

detection of the MitM attack. 

To test the effectiveness of Method 2, we set up HostA to send many thousands of 

packets per second into the network and measured the attack detection ratio, whereby 

es senter of probTotal numb

s detectionsuccessfulNumber of 
 ratio Detection   

During these tests, HostB was sending either single probe packets or series of 3, 5 

or 7 packets per probe. The results of our measurements are summarized in Figure 3. 

We notice that the success of detection depends on the number of packets sent in a 

single probe. The rather low detection ratio of 30% for single-packet probes was 

doubled by sending three packets in each probe. Further increases in number of 

packets per probe to five and seven raised the detection ratio to 80% and 90% 

respectively. 

It is also obvious that the detection ratio doesn’t depend on the rate at which HostA 

sends packets into the network. If we neglect the variations in the value of the 
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detection ratio, which exist due to a stochastic nature of real-time network 

communication, we can consider all four curves in Figure 3 as constants. 

 

Figure 3: Success in detection of Cain & Abel with Method 2 

5. Limitations of Method 1 and 2 

Both the theoretical discussion and results of our experiments have revealed certain 

limitations of both proposed methods. 

As we know from Sections 2 and 4.2, the biggest limitation of Method 1 is its 

inability to handle detection of MitM attack tools which use their own IP-to-MAC 

address mappings for forwarding packets (e.g. Cain & Abel). Even though Method 2 

solved this problem, other factors exist which may limit its effectiveness. 

In the third step of the detection process with Method 2, we assumed that HostB 

receives ARP replies for HostA_IP from both HostA and HostX. While this is 

generally the case, HostX might as well launch a DoS attack against HostA, 

preventing it from successfully delivering its ARP reply to HostB. This way only 

HostX’s ARP reply would reach HostB, rendering Method 2 useless. 

The results of our experiments in Section 4.3 have shown that the effectiveness of 

Method 2 depends on the number of packets sent in a single probe. Sending too 

many probe packets, however, may cause disruption in traffic flow towards HostA, 

due to the fact that HostB temporarily hijacks all LAN traffic destined to 

HostA_MAC. This problem may be solved by storing the hijacked packets in a 

queue on HostB and delivering them back to HostA after the probe. 
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6. Conclusion 

In this paper we have described two novel methods for detection and prevention of 

ARP-based MitM attacks on switched Ethernet LANs. Both methods work as 

extensions to the ARP protocol and don’t interfere with normal ARP operation. 

Therefore, both these methods can co-exist on the same LAN with regular ARP 

implementations and are thus suitable for incremental deployment. We have seen 

examples of such co-existence in experiments in which one host (HostB) used either 

Method 1 or Method 2, while another host (HostA) used default implementation of 

ARP as provided by the operating system. 

Even though both our methods can be used to identify and prevent ARP poisoning 

attacks, an ultimate solution to the problem of ARP insecurity can only be provided 

through an improved version of the ARP protocol, which would be backwards 

compatible and would allow for an incremental implementation. In (Abad and 

Bonilla, 2007) the authors have given a definition of an ideal solution for prevention 

of ARP-based attacks, which may be the first step towards reaching this goal. 
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