
A Method for Reducing Space Complexity of

Incidence Matrices of Traceable Graphs and

its Application in Parallel Computing

Kenan Kalajdzic <kenan@unix.ba>

Written in March 2012 (original idea 1998)

Abstract

We present a simple method to reduce the space complexity of an
incidence matrix of a traceable undirected graph by O(n2), where n is
the number of vertices of the graph. Large-scale parallel applications,
which make use of the incidence matrix representation, could ben-
efit from the reduced memory, storage and bandwidth requirements
achieved by utilizing the presented method.

1 Introduction and basic definitions

Let G = (V,E) be an undirected graph with vertices V = {v1, v2, . . . , vn}
and edges E = {e1, e2, . . . , em}. The relationship between the vertices and
edges of G can be conveniently expressed through an incidence matrix.

The incidence matrix M of the graph G is an n × m matrix, whose
elements mij are defined as follows:

mij =

{

1 if edge ej is incident on vertex vi

0 if edge ej is not incident on vertex vi

Consider the example graph G1 shown in Figure 1. The incidence matrix
M1 of this graph has the size of 8 × 13 and is defined as follows:

M1 =

























0 0 0 1 0 1 1 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 1 1 0 1

























1



Looking at the matrix M1, it is hard to observe any regular structure. In
the general case, the vertices and edges of G1 are named arbitrarily, which
makes the distribution of 0s and 1s in the matrix M1 irregular.

v6

v2 v8 v4

v5 v1 v7

v3

e5

e2

e13

e11

e8 e10 e7 e9

e6

e1

e4

e12 e3

Figure 1: Graph G1 with 8 vertices and 13 edges

Let us assume that G is a traceable graph. This means that there exists
at least one simple path P which connects all the vertices of G. Such a
path is called Hamiltonian or traceable. In the forthcoming discussion we
demonstrate how it is possible to reorder the vertices and edges of any
traceable graph to produce a corresponding incidence matrix with a partly
regular structure.

a. b.

Figure 2: Two different Hamiltonian paths of the graph G1

For the purpose of illustration, let us consider the example graph G1. It is
easy to see that G1 is traceable and contains multiple Hamiltonian paths
(Figure 2).

2



Figure 3: A connected graph without a Hamiltonian path

A slightly different graph is shown in Figure 3. Despite being connected, this
graph is not traceable, meaning it is not possible to find a simple path which
connects all its vertices. The method, which we describe in the following
section, is therefore not applicable to this graph.

2 Description of the method

Let P1 be a Hamiltonian path of G1. For the purpose of discussion, we
assume P1 is the path shown in Figure 2b. Once we have chosen the path
P1, we continue with the following procedure:

1. Beginning with the start vertex, which we name v′1, we continue nam-
ing all the vertices along the path P1 sequentially, so that their indices
are increasing as we traverse P1 from the start to the end.

2. Subsequently, we name all the edges of P1, so that the edge connecting
vertices v′i and v′i+1 is named e′i, i = 1, 2, . . . , n − 1.

3. Finally, we name the remaining edges e′n, e′n+1, . . . , e
′

m in an arbitrary
fashion.

The result is shown in Figure 4. The corresponding incidence matrix M ′

1

defines the relationships between the renamed vertices and edges of G1:

M ′

1 =

























1 0 0 0 0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 1 0 1
0 0 1 1 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0

























3



v′8

v′7 v′5 v′4

v′6 v′3 v′1

v′2

e′7

e′8

e′9

e′4

e′6 e′5 e′10 e′3

e′11

e′12

e′13

e′2 e′1

Figure 4: Graph G1 with renamed vertices and edges

As a result of renaming the vertices and edges along the path P1, the seven
leftmost columns of M ′

1 have a regular form, in which the 1s are distributed
diagonally. The rightmost six columns of M ′

1 have a rather arbitrary distri-
bution of 0s and 1s due to the way in which we named the remaining edges
of G1. We can now conveniently define the matrix M ′

1 as:

M ′

1 =
[

L′

1 R′

1

]

, L′

1 =

























1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

























, R′

1 =

























0 0 0 0 1 1
0 0 0 0 0 0
0 0 1 1 0 1
0 0 0 0 1 0
1 1 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

























2.1 Generalization of the presented method

The method described in the previous section can be used to transform an
n×m incidence matrix M of a traceable graph G into an equivalent incidence
matrix M ′, with two submatrices L′ and R′, such that:

M ′ =
[

L′ R′
]

The left submatrix L′ is an n×(n−1) matrix, whose elements l′ij are defined
as follows:

l′ij =

{

1 i = j or i = j + 1 j ∈ {1, 2, . . . , n − 1}
0 otherwise

4



The right submatrix R′ contains the rightmost m − n + 1 columns of M ′.
Since, however, the locations of the 1s in the matrix R′ are generally not pre-
dictable, a further analysis of R′ in the context of reducing space complexity
of M is not of an interest to us.

2.2 An alternative interpretation

The process of converting M into M ′ can be interpreted in a different way.
Renaming the vertices and edges of the graph G corresponds to reordering of
the rows and columns of its incidence matrix M . Matrix M ′ is derived from
the matrix M through a specific permutation of the rows and columns of M .
In an n×m incidence matrix M there is a total of n!m! such permutations.
If the graph G is traceable, then we can always find at least (m − n + 1)!
permutations which produce M ′ with the left submatrix L′.

3 Application in parallel computing

Even though incidence matrices are fairly inefficient in terms of space com-
plexity, some applications may still use them as a convenient representation
in solving problems which are modeled using graphs.

Consider a parallel MPI-based application consisting of p processes which
are executing on a cluster, and assume the root process calls MPI_BCAST()

to distribute a huge n × m incidence matrix M to all non-root processes.
In this situation, the root process may first perform conversion from M to
M ′ as described in Section 2 and inform all the non-root processes about
it. Each process could then easily derive the left submatrix L′, so that root
would only have to broadcast the right submatrix R′. The total savings
while transferring the matrix M would be O(pn2).

Since, however, M is sparse, it is likely that a carefully designed parallel
application would use a more space-efficient data structure for storing and
distributing the contents of M . In this case, the conversion from M to M ′

would yield savings of O(2pn).

5


